
Eureka!

Martin Barreto

Speed up iOS forms development

@mtnBarreto

15K+ apps using it!

Dropbox - Kindle - Foursquare - Chase Mobile
AOL Radio - Smule - MLB.com - American Airlines

Topics

● Key concepts

● Row types

● Hide/Show row/sections

● Validations

● OSS learned lessons and tips

Key Concepts

Let’s start from the beginning.

Key Concepts - DSL

● Form: Represents the form which has a collection of sections.

● Section: Represents a section of the UITableView. Contains a

collection of rows.

● Row: Contains information about the form fields such as title,

callbacks, associated table view cell and row value.

● FormViewController: Eureka form controller, subclass of

UIViewController.

Key Concepts - DSL

Key Concepts - Operators

+++ Adds a section <<< Inserts a row

Key Concepts - Tags

● Tags

○ Identify rows and sections

○ They are optional

○ Mainly used to:

■ Obtain specific row or section

■ Get values out of the form

Key Concepts - Tags

Key Concepts - Callbacks

Allow us to change appearance and behavior of a row.

● onChange
● cellSetup
● cellUpdate
● onCellSelection
● onCellHighlightChanged
● onRowValidationChanged
● onExpandInlineRow, onCollapseInlineRow
● onPresent

Key Concepts - Callbacks

Row Types

There are many available rows
and you can also create custom
ones

Row Types

Row Types

Row Types

Row Types

Row Types

Hide/Show rows and
sections
Nothing is static nowadays

● Eureka automatically updates the table view whenever a row or

section is inserted/removed/replaced

● Hidden condition: Hide/Show a specific row or section depending

on the value of another row

Hide/Show rows and sections

Hide/Show rows and sections

Validations

Form validation has never been
so easy!

Validations

● Each row has a collection of validation rules.

● Rules provided by default:

○ Required

○ Email

○ URL

○ GreaterThan, SmallerThan

○ MinLength, MaxLength

○ Closure

● You can create your own rules if needed.

Validations

● row.validationOptions property lets us specify when validation

rules should be evaluated.

○ validatesOnDemand

○ validatesOnChange

○ validatesOnBlur

○ validatesOnChangeAfterBlurred

● row.isValid boolean property indicates if the row is valid or not.

● row.validate(), form.validate() allows us to manually

perform validations. Both methods return a list of errors.

Validations

● row.validationErrors returns validation errors list.

● row.onRowValidationChanged can be used to get notified

when validations change.

Validations

● row.validationErrors returns validation errors list.

● row.onRowValidationChanged can be used to get notified

when validations change.

Validations

● row.validationErrors returns validation errors list.

● row.onRowValidationChanged can be used to get notified

when validations change.

Validations

Validations

OSS learned lessons and
tips
There is no magic! Just hard
work!

Giving back to the
community is what
really matters!!

Passion
● Use OSS everyday
● Awesome solution
● Perfectionist

Open source is all
about discussion!

● Open Mindset
● Incrementally
● Community Driven

● Creating an Issue

○ Reporting an Issue.
○ Asking for a feature.
○ Discussing a feature or whatever.
○ Answering community questions.

Contributing to a project - 1

Contributing to a project - 2

● Making a pull request

○ Fixing an issue.
○ Implementing a new feature.
○ Documenting. Not everything is

code.

Contributing - My first experience

Tips - OSS library from Scratch - 1

● Great Documentation!
○ Very basic library usage.
○ Gif / Benchmarks / Code snippet to

show elegance / Compare with the
old way.

○ Installation: Support as many
dependency managers as possible.

○ PR template, New issue template.

Tips - OSS library from Scratch - 2

● Tests & CI.
● Tag issues.
● Whenever possible refer to another

issue to answer/solve an issue.
● Make public project goals and

direction.

Tips - OSS library from Scratch - 2

● Release Notes.
● Migration Guide.
● Create a community around the

library.

Make it popular

● Blog post introducing the library.
● Community influencers.
● Publish library on Awesome Swift,

Awesome iOS.
● Submit it to CocoaControls.
● PR to iOS Goodies.
● Post on Hacker News.

Make it popular - 1

Make it popular - 2

● Readme makes clear that your
library is different than the
other ones?

● Make sure to have a cool logo
● Promote it from your twitter

account, mention influencers.

My first experience and examples

What we achieved by
following that

Thank you!

@mtnBarreto

https://github.com/xmartlabs

We are hiring!
careers@xmartlabs.com

