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Key Concepts

Let’s start from the beginning.



Key Concepts - DSL

● Form: Represents the form which has a collection of sections.

● Section: Represents a section of the UITableView. Contains a 

collection of rows.

● Row: Contains information about the form fields such as title, 

callbacks, associated table view cell and row value.

● FormViewController: Eureka form controller, subclass of 

UIViewController.



Key Concepts - DSL



Key Concepts - Operators

+++  Adds a section <<<  Inserts a row



Key Concepts - Tags

● Tags

○  Identify rows and sections

○ They are optional

○ Mainly used to:

■ Obtain specific row or section

■ Get values out of the form



Key Concepts - Tags



Key Concepts - Callbacks

Allow us to change appearance and behavior of a row.

● onChange
● cellSetup
● cellUpdate
● onCellSelection
● onCellHighlightChanged
● onRowValidationChanged
● onExpandInlineRow, onCollapseInlineRow
● onPresent



Key Concepts - Callbacks



Row Types

There are many available rows 
and you can also create custom 
ones



Row Types



Row Types



Row Types



Row Types



Row Types



Hide/Show rows and 
sections
Nothing is static nowadays



● Eureka automatically updates the table view whenever a row or 

section is inserted/removed/replaced

● Hidden condition: Hide/Show a specific row or section depending 

on the value of another row

Hide/Show rows and sections



Hide/Show rows and sections



Validations

Form validation has never been 
so easy!



Validations

● Each row has a collection of validation rules.

● Rules provided by default:

○ Required

○ Email

○ URL

○ GreaterThan, SmallerThan

○ MinLength, MaxLength

○ Closure

● You can create your own rules if needed.



Validations

● row.validationOptions property lets us specify when validation 

rules should be evaluated.

○ validatesOnDemand

○ validatesOnChange

○ validatesOnBlur

○ validatesOnChangeAfterBlurred

● row.isValid boolean property indicates if the row is valid or not.

● row.validate(), form.validate() allows us to manually 

perform validations. Both methods return a list of errors.



Validations

● row.validationErrors returns validation errors list.

● row.onRowValidationChanged can be used to get notified 

when validations change. 
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Validations



OSS learned lessons and 
tips
There is no magic! Just hard 
work!



Giving back to the 
community is what 
really matters!!



Passion
● Use OSS everyday
● Awesome solution
● Perfectionist



Open source is all 
about discussion!

● Open Mindset 
● Incrementally
● Community Driven



● Creating an Issue

○ Reporting an Issue.
○ Asking for a feature.
○ Discussing a feature or whatever.
○ Answering community questions.

Contributing to a project - 1



Contributing to a project - 2

● Making a pull request

○ Fixing an issue.
○ Implementing a new feature. 
○ Documenting. Not everything is 

code.



Contributing - My first experience



Tips - OSS library from Scratch - 1

● Great Documentation!
○ Very basic library usage.
○ Gif / Benchmarks / Code snippet to 

show elegance / Compare with the 
old way.

○ Installation: Support as many 
dependency managers as possible.

○ PR template, New issue template.



Tips - OSS library from Scratch - 2

● Tests & CI.
● Tag issues.
● Whenever possible refer to another 

issue to answer/solve an issue.
● Make public project goals and 

direction.



Tips - OSS library from Scratch - 2

● Release Notes.
● Migration Guide.
● Create a community around the 

library.



Make it popular



● Blog post introducing the library. 
● Community influencers.
● Publish library on  Awesome Swift, 

Awesome iOS.
● Submit it to CocoaControls.
● PR to iOS Goodies.
● Post on Hacker News.

Make it popular - 1



Make it popular - 2

● Readme makes clear that your 
library is different than the 
other ones?

● Make sure to have a cool logo
● Promote it from your twitter 

account, mention influencers.



My first experience and examples









What we achieved by 
following that

























Thank you!

@mtnBarreto

https://github.com/xmartlabs

We are hiring!
careers@xmartlabs.com


