How coding for testability
made me a better developer

A brief story about web development well done

J Approve PR?

CODER 1

1

Bad codel!

~

Done. Approve PR?

No tests!

AN

Done. Approve PR?

CODER 2

So | did some research

Goog

how to test mobile native

le

Argentina

Buscar con Google Me siento con suerte

(==

So | did some research

Google howtotest mobile native Ul n

Todos Imagenes Videos Noticias Maps Més Herramientas de busqueda

Cerca de 461,000 resultados (0.35 segundos)

Does Narnia really Exist? [Archive] - The Dancing Lawn - Official ...
www.narniafans.com/fforum/archivefindex.php/t-13223.html = Traducir esta pagina
27 oct. 2006 - 33 publicaciones - 25 autores

[Archive] Does Narnia really Exist? The Lion, The Witch and the Wardrobe.

Do you think Narnia Is Real? What would ... 53 publicaciones 30 Ago. 2010

Narnia Scene It? 12 publicaciones 14 Ene. 2007
What happens to the apple tree from the ... 13 publicaciones 15 Dic. 2006
Do you beleive there is a Narnia? 100+ publicaciones 8 Ene. 2006

Mas resultados de www.namiafans.com

Does Narnia exist? | know the answear. YES - YouTube
https:/fiwww.youtube.com/watch?v=eVVRWgqzBhXk

15 jun. 2012 - Subido por Tormatic

Here is the truth about narnia. :D. ... Does Narnia exist? | know the answear.
@By YES. Tormatic ...

does Narnia really exist......? | Yahoo Answers
https://uk.answers.yahoo.com/question/index?qid... * Traducir esta pagina

11 ene. 2010 - Best Answer: Narnia was originally the holiday-home of Pliny the Younger's Mother-in-
Law (this is where CS Lewis took the name from).

Agenda

Introduction

About me

Wasteful and helpful tests (6 min)

A short TDD implementation (6 min)
Where tests go in MVVM (6 min)
Application Events (10 min)
Recap (4 min)

S 0 200 2 UK

About me

Last 3 years working in Restorando

Before that, rewrote AMC Theatres app. Lucas Vidal
o _ . LucasVidal

Before that, a gazillion MVPs in software factories

Teaching assistant in UTN FRBA

Amateur guitar player

Where this talk applies

FORMATION VALIDATION GROWTH

Mission > Vision > Strategy Lean Startup ocale Up

° e"-h--—

Problem | Solution Fit Vision / Founders Fit Product / Mar =i Business Model | Market Fit

_ J
Y

Here

How did | started testing

e At my university one of my programming classes required to present a work
with Unit Tests as an outcome.

e At Restorando, every web dev did it

e When | released my first Pod, my boss (luckily) forced me to have it properly
tested as a company rule.

e WWDC and Google I/O started to speak openly about it.

Why | did not do it in the first place

Not enough time.

Just one developer per project.

Too many iterations.

Native is way more complex to test due to all its features and concurrencies.

And our client app was just a presentation client.

Wasteful tests

Presentation client app have very low business logic

If | had done a test back then, it would have looked kind of like this...

func testScreenShowsActiveWithActiveModel() {
let model = Model(status: "active")
let viewController = SomeViewController(model)
XCTAssertEqual(viewController.buttonColor, .green)
XCTAssertEqual(viewController.statusLabel.text, "Its status is active")

Presentation client app have very low business logic
Or like this...

func testObjectHasBeenParsedProperly() {
let model = Model(fromJSON: someMockedResponse)
XCTAssertNotNil(model)

func testObjectParseFailsWithGibberish() {
let model = Model(fromJSON: "v!#$N(PSdcklj®9nge2AS:MLK")
XCTAssertNil(model)

It's a fact that

Teams will change
Rules will change
Code will be mostly rewritten once or twice a year

Metrics over unit tests

Take away #1

Some application layers change frequently.

Don’t test dummy things, nor things that will change more
than what you can maintain.

Helpful tests

Tests are the best documentation

You can be 100% sure that what the test says it happens, happens
(or fails)

You have to be really explicit about the rules you are setting, any
other should understand it in the code review

You are leaving for future self and newcomers the reasons why
something happens.

There was a special place in my app

iPod = 19:30 7 @4
Reservar en

1. Show me all the availability broken down by time Wasabi’s (Palermo) X
2. For the same time there might different slots o
3. For each slot, sort them by discount % & Personas 2
4. Also include extra discounts if logged in onto our , ieves
loyalty program. 5 Dia 18 reviermiira
5. Just put the better discount along with the extra
discount if logged in to our loyalty program.
6. Ok: this is the rule: Voucher, Best discount, Best 20:00 20% OFF 10% OFF
extra discount.
6 a. ... But only two of them 20:30 oo sty

6 b. ... In that order i e
21:00 y

con Restorando

21:30 20% OFF

con Restorando

99-00 20% OFF

con Restorando

99.3() 20% OFF

con Reetarando

TDD

TDD 101

” N

Write a Make
Failing the Test
Test Pass

Refactor

In practise, there’s
no need to have a
clear distinction

between these two

4

Example of a real TDD

func testOneVoucherAndOneDiscountCampaign() {

Example of a real TDD

func testOneVoucherAndOneDiscountCampaign() {
//pre conditions
let noDiscountCampaign = Campaign(discount: 20)
let voucherBenefit = Benefit(type: .Voucher)

Example of a real TDD

func testOneVoucherAndOneDiscountCampaign() {
//pre conditions

let noDiscountCampaign = Campaign(discount: 28)
let voucherBenefit = Benefit(type: .Voucher)
//sut

let presentationlLogic = PresentationlLogic()

Example of a real TDD

func testOneVoucherAndOneDiscountCampaign() {
//pre conditions
let noDiscountCampaign = Campaign(discount: 28)
let voucherBenefit = Benefit(type: .Voucher)

//sut
let presentationLogic = PresentationlLogic()

//assertions
let presentedSlots = presentationLogic.present(
benefits: [voucherBenefitl],
discounts: [noDiscountCampaign]
)
XCTAssertEqual(presentedSlots.count, 2)
XCTAssertEqual(presentedSlots[@].textShown, "wvoucher")

XCTAssertEqual(presentedSlots[1].textShown, "20% discount")

Other TDD use cases

Networking layer

func testNetworkingLayerReturnsCachedCopyAndThenServerResponse()

Weird date operations

func testThatADatetimeAfterMidnightIsStillTheDayBeforel()

TDD is Dead!

e DHH

e Martin Fowler

e Kent Beck
MUST View!

http://martinfowler.com/articles/is-tdd-dead/

David Heinemeier Hansson

@dhh

Cases of bad TDD

Test-induced design damage

— It can lead to approaches such as hexagonal rails, that is design damage due
to the complexity of excessive indirection.

You can do too much testing!

— There is a problem with teams valuing tests more than they value the functional
code

Take away #2

Write test so that you can understand complex tasks better,
while leaving documented code.

Don’t TDD everything, don’t test everything. It can be
counterproductive and lead to excessively complex designs.

Dependencies

How coupled your code can be

(and you didn’t even noticed)

How coupled your code can be

Afternoon Detector
instance

class AfternoonDetector {
func sendNotificationIfItsAfter4pm() {
let date = Date()
let hour = NSCalendar.current.component(.hour, from: date)
if hour »>= 16 {
NotificationCenter.default
.post(Notification(name: Notification.Name("after four")))

How coupled your code can be

Afternoon Detector
instance

class AfternoonDetector

func sendNotificationIfdtsAT\er

let date = Datel()

let hour = NSCalendar:

if hour »= 16 {
NotificationCenter fault

.post(Notification(name: Notification.Name("after four")))

urreyft.component(.hour, from: date)

How would you test it?

func testThatNSNotificationIsSentAfter4pm() {
//pre conditions
//How do I set the date to before and after four?

//sut
let detector = AfternoonDetector()
detector.sendNotificationIfItsAfter4pm()

//assersions
//How do I know whether I got the notification or not?

You need to let others know
who you depend from

Dependencies

loC: inversion of control (Or Hollywood Principle: Don't call us, we'll call you)

In one line;

I'll provide to you what you say you need

so that you can work as | expect

Dependencies

Clarify which are the layers that the system under test will be and which will not

- Networking

- Parse

- APls and third party libraries
- Business logic

- Events

Inject all that we expect not to fail for any given test.

class AfternoonDetector {
let datelogic: Datelogic
let notificationCenter: NotificationCenter

init(dateLogic: Datelogic = Datelogic(),
notificationCenter : NotificationCenter = NotificationCenter.default) {
self.datelLogic = datelLogic
self.notificationCenter = notificationCenter

}
class Datelogic: { You can:
im0 L > Subdass
y -> Provide a mocked instance sharing a
protocol
func currentCalendar() -> Calendar {=> Perform assertions on it
return Calendar.current => ... or pretty much do whatever you want
¥ with this dependency now.

It’s yours

You don't need a dependency injection
framework.

But here’s the one | use.

u
Swinject

https://github.com/Swinject/Swinject

Take away #3

Be explicit on what a class uses so everyone can understand
what happens under the hood.

By extracting your dependencies you can create tests that
only test what you want to test.

MVVM in 5 seconds

owns owns

View | View Controller View Model | Model

Updates Updates

Data Binding is HIGHLY recommendable
You should learn reactive programming!!! https://github.com/ReactiveX/RxSwift

MVVM as an easier way to handle the SUT

OWns OwWns
View | View Controller ‘ View Model | Model
Updates Updates
Pont V_/aste Presentation Business logic
your time Model, Utils &

testing this!!! Logic Helpers, etc.

Why MVVM?

Model

Data container
Some business

rules

ViewController

Retrieve data from server
Transform response into
business objects
Presentation rules
Business rules

\

View

Ul Hierarchy

In order to test this, you'll have to supply a
view object, a server response, and lots of
dependencies

Why MVVM?

Model ViewModel ViewController View
Data container Networking The view Ul Hierarchy
Some business Business Logic controller

rules

Presentation logic manipulates the

view for a limited
T set of
representational
statuses

Given a model or a network response, it
produces an enum that represents a view
state, which the view controller must handle

Quick example

//Model
struct Restaurant {
let status: String
let availability: Bool

g
These are all the states a

//ViewModel output <¢,f~*””’,’,_Wewcansth

enum RestaurantStatus {
case Opened(Restaurant)
case NoAvailability(Restaurant)
case Closed(String)
case NetworkError(Error)

... but they’re abstracted.

Quick example

func restaurantViewModel() {

func fetchRestaurant() -» RestaurantStatus {

//some network operations Presentation

if let restaurant = aRestaurant; { 4,//””|Og"3thatlrea"y
if restaurant.status == "active" { want to test
return restaurant.availability ?
.Opened(restaurant) :
.NoAvailability(restaurant)
} else {
return .Closed("closed restaurant")

1
} else {

return .NetworkError(NSError(domain: "", code: @, userInfo: nil))
b

Take away #4

The most important rules should be independent of the views
were it is being presented.

You do not want to test those views, since they will easily
change. You want to test the logic behind it (A.K.A.
ViewModel)

Take away #4

(Sidenote)

In bigger applications | do want to test the Ul, but the purpose is to
guarantee reliability, not to assert on the application’s behavior.

e Metrics might not be enough
e Uptime is critical
e \Way too many developers!

Application Events

Know what matters
Application

Product

Business

A mature

developer is the

one that can

understand how a

line of code affects CODER 1
the product, and

ultimate the

business

To understand business
you need to understand user behavior

No one will ever tell you that an event
has stopped being tracked...

until it's too late

Take away #5

Have 100% coverage of all the events and where are they
being triggered.

Upside: Events taxonomy documented!

Events.Restaurant.Profile.SegueToRestaurant {
/// Register when user opens a restaurant profile
{// - Parameter restaurant: the restaurant slug
{{/ - Event name: segue-to-restaurant
amplitudeParams: [String: Any] {
re ["restaurant”: selectedRestaurant.restaurantId]

Events.Restaurant.Profile.OpenDescription {
/{/ Register when user want to see the restaurant description
/{/ - Parameter restaurant: the restaurant slug
/{/ - Event name: restaurant-profile-description-open
- amplitudeParams: [String: Any] {
ret ["restaurant®: restaurantId]

Events.Restaurant.Profile.OpenPayments {
/// Register when user want to see al the restaurants payment m
f{{ - Parameter restaurant: the restaurant slug
/{/ - Event name: restaurant-profile-payments-show-more
amplitudeParams: [String: Any] {
i ["restaurant”: restaurantId]

Recap

Take away #1
Don’t test what its dummy or change too often

Take away #2
Use a TDD approach to tackle rules that you want to be respected in the future

Take away #3

Learn to decouple your classes so you can use them independently (i.e. in
tets)

Take away #4
Use MVVM or similar architecture to decouple presentation rules from views

Take away #5
Have your application events documented in code and fully covered by tests!

Thanks!

Questions?

Thanks again! ;)

Github: LucasVidal
Twitter: @!ucasvidalutn
Instagram: nope

Snapchat: nope
Email / Hangouts: lucasvidalutn@gmail.com R%t@’uuldo

Talk playground gist: http://bit.do/what-to-test

https://github.com/LucasVidal
https://twitter.com/lucasvidalutn
mailto:lucasvidalutn@gmail.com
http://bit.do/what-to-test

