
How coding for testability
made me a better developer

A brief story about web development well done

Approve PR?

Bad code!

Done. Approve PR?

No tests!

Done. Approve PR?

K

CODER 1 CODER 2

So I did some research

So I did some research

➔ Introduction √
➔ About me
➔ Wasteful and helpful tests (6 min)
➔ A short TDD implementation (6 min)
➔ Where tests go in MVVM (6 min)
➔ Application Events (10 min)
➔ Recap (4 min)

Agenda

About me

Last 3 years working in Restorando

Before that, rewrote AMC Theatres app.

Before that, a gazillion MVPs in software factories

Teaching assistant in UTN FRBA

Amateur guitar player

Where this talk applies

Here

● At my university one of my programming classes required to present a work
with Unit Tests as an outcome.

● At Restorando, every web dev did it
● When I released my first Pod, my boss (luckily) forced me to have it properly

tested as a company rule.
● WWDC and Google I/O started to speak openly about it.

How did I started testing

Not enough time.

Just one developer per project.

Too many iterations.

Native is way more complex to test due to all its features and concurrencies.

And our client app was just a presentation client.

Why I did not do it in the first place

Wasteful tests

If I had done a test back then, it would have looked kind of like this...

Presentation client app have very low business logic

Or like this...

Presentation client app have very low business logic

Teams will change

Rules will change

Code will be mostly rewritten once or twice a year

Metrics over unit tests

It’s a fact that

Some application layers change frequently.

Don’t test dummy things, nor things that will change more
than what you can maintain.

Take away #1

Helpful tests

You can be 100% sure that what the test says it happens, happens
(or fails)

You have to be really explicit about the rules you are setting, any
other should understand it in the code review

You are leaving for future self and newcomers the reasons why
something happens.

Tests are the best documentation

There was a special place in my app

1. Show me all the availability broken down by time
2. For the same time there might different slots
3. For each slot, sort them by discount %
4. Also include extra discounts if logged in onto our
loyalty program.
5. Just put the better discount along with the extra
discount if logged in to our loyalty program.
6. Ok: this is the rule: Voucher, Best discount, Best
extra discount.
6 a. ... But only two of them
6 b. … In that order

TDD

TDD 101

In practise, there’s
no need to have a
clear distinction
between these two

Example of a real TDD

Example of a real TDD

Example of a real TDD

Example of a real TDD

Networking layer

Weird date operations

Other TDD use cases

TDD is Dead!

● DHH
● Martin Fowler
● Kent Beck

MUST View!
http://martinfowler.com/articles/is-tdd-dead/

Cases of bad TDD

Test-induced design damage

→ It can lead to approaches such as hexagonal rails, that is design damage due
to the complexity of excessive indirection.

You can do too much testing!

→ There is a problem with teams valuing tests more than they value the functional
code

Write test so that you can understand complex tasks better,
while leaving documented code.

Don’t TDD everything, don’t test everything. It can be
counterproductive and lead to excessively complex designs.

Take away #2

Dependencies

(and you didn’t even noticed)

How coupled your code can be

How coupled your code can be

Afternoon Detector
instance

How coupled your code can be

Afternoon Detector
instance

How would you test it?

You need to let others know
who you depend from

IoC: inversion of control (Or Hollywood Principle: Don't call us, we'll call you)

In one line:

I’ll provide to you what you say you need

so that you can work as I expect

Dependencies

Dependencies

Clarify which are the layers that the system under test will be and which will not

- Networking
- Parse
- APIs and third party libraries
- Business logic
- Events

Inject all that we expect not to fail for any given test.

You can:
➔ Subclass
➔ Provide a mocked instance sharing a

protocol
➔ Perform assertions on it
➔ ... or pretty much do whatever you want

with this dependency now.

It’s yours

You don’t need a dependency injection
framework.

But here’s the one I use.

https://github.com/Swinject/Swinject

Be explicit on what a class uses so everyone can understand
what happens under the hood.

By extracting your dependencies you can create tests that
only test what you want to test.

Take away #3

MVVM in 5 seconds

Data Binding is HIGHLY recommendable
You should learn reactive programming!!! https://github.com/ReactiveX/RxSwift

Don’t waste
your time

testing this!!!

MVVM as an easier way to handle the SUT

Presentation
Logic

Business logic
Model, Utils &
Helpers, etc.

View

UI Hierarchy

ViewController

Retrieve data from server
Transform response into
business objects
Presentation rules
Business rules
…
...

Model

Data container
Some business
rules

Why MVVM?

In order to test this, you’ll have to supply a
view object, a server response, and lots of

dependencies

ViewModel

Networking
Business Logic
Presentation logic

ViewController

The view
controller
manipulates the
view for a limited
set of
representational
statuses

View

UI Hierarchy

Model

Data container
Some business
rules

Why MVVM?

Given a model or a network response, it
produces an enum that represents a view
state, which the view controller must handle

Quick example

These are all the states a
view can show

... but they’re abstracted.

Quick example

Presentation
logic that I really
want to test

The most important rules should be independent of the views
were it is being presented.

You do not want to test those views, since they will easily
change. You want to test the logic behind it (A.K.A.
ViewModel)

Take away #4

(Sidenote)

In bigger applications I do want to test the UI, but the purpose is to
guarantee reliability, not to assert on the application’s behavior.

● Metrics might not be enough
● Uptime is critical
● Way too many developers!

Take away #4

Application Events

Know what matters

CODER 1

Application

Product

Business

A mature
developer is the
one that can
understand how a
line of code affects
the product, and
ultimate the
business

To understand business
you need to understand user behavior

No one will ever tell you that an event
has stopped being tracked…

until it’s too late

No one

No one

No one

No one

No o
ne

No one

Have 100% coverage of all the events and where are they
being triggered.

Take away #5

Upside: Events taxonomy documented!

Take away #1
Don’t test what its dummy or change too often

Take away #2
Use a TDD approach to tackle rules that you want to be respected in the future

Take away #3
Learn to decouple your classes so you can use them independently (i.e. in
tets)

Take away #4
Use MVVM or similar architecture to decouple presentation rules from views

Take away #5
Have your application events documented in code and fully covered by tests!

Recap

Thanks!

Questions?

Github: LucasVidal
Twitter: @lucasvidalutn
Instagram: nope
Snapchat: nope
Email / Hangouts: lucasvidalutn@gmail.com

Talk playground gist: http://bit.do/what-to-test

Thanks again! :)

https://github.com/LucasVidal
https://twitter.com/lucasvidalutn
mailto:lucasvidalutn@gmail.com
http://bit.do/what-to-test

