
MARCOS BARRETO
Project Leader @ MercadoLibre

12 Nov 2016Mobile Day UY

A not so long time ago
in a galaxy not so

far far away...

One team to rule them all

Search Team

VIP Team MyML Team iOS Team

Home Team Android Team

Desktop

Desktop

Desktop

Desktop
Home

Search
VIP

MyML

Home
Search

VIP
MyML

Search Team

VIP Team MyML Team iOS Team

Home Team Android Team

Desktop
Android

iOS

Desktop
Android

iOS

Desktop
Android

iOS

Desktop
Android

iOS
Architecture

Architecture

To scale and to be agile,
we needed to change

Scaling the mobile code...
➢ Improve code quality and reduce bugs

➢ Facilitate mobile development

➢ Support new teams in app dev.

➢ More agile development

MELI APP

Shared Libs & SDKs

Navigation Module

Home
Module

Search
Module

VIP
Module

Legacy
AppCHO

Module

iOS Android OS

Core Libs

ML APP
MELI SDK

Home Search VIP

Commons UI Rest Client

Authentication Networking Notifications

CHO SI . . .

Tracking libraries

Basic structure
➢ Each module has a testapp

➢ Each module can have one

(or more) Android modules.

➢ Each module just imports:

...
compile("com.mercadolibre.android.sdk:sdk:$sdkVersion")
compile("com.mercadolibre.android.sdk:mvp:$sdkVersion")
...

How do we
communicate?

Communication
➢ Modules don't know each other.
➢ The navigation is through predefined URLs
➢ 100% decoupled and “Deep Linking” Ready

final Intent intent = new Intent(this);
final Uri uri = Uri.parse("myscheme://myhost/segment1?k=v");
intent.setData(uri);
startActivity(intent);

Navigation
➢ Pro:

➢ Simple and known approach.
➢ Based in how Android handles the deeplinks.

➢ Cons:
➢ Uri has to be parsed
➢ Cannot do pre-fetching

<activity
 android:name=".activities.MyActivity"
 android:exported="false">

 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />

 <data
 android:host="items"
 android:pathPattern="/something"

 android:scheme="ml" />
 </intent-filter>
</activity>

Navigation

public class MyActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 // ml://items/something?k=v

 if (getIntent().getData() != null) {

 final Uri deeplink = getIntent().getData();

 final List<String> segments = deeplink.getPathSegments();

 final String val1 = deeplink.getQueryParameter("k");

 ...

Navigation

segments.get(0) == "something"

Wrapper 2.0

This is our vision
Building the foundation to Build a 3B Company by FY20

Meli API

Mobile
Middleware
(Wrapper)

Wrapper 2.0

This is our vision
Building the foundation to Build a 3B Company by FY20

Meli API

Mobile
Middleware
(Wrapper)

Wrapper 2.0

text
translations
behaviour

text
translations
behaviour

This is our vision
Building the foundation to Build a 3B Company by FY20

Wrapper 2.0

This is our vision
Building the foundation to Build a 3B Company by FY20

Wrapper 2.0
{

id: "sign_up",
title: "¿Aún no tienes cuenta?",
button:
{

text: "Regístrate gratis",
text_color: "#666666",
background_color: "#ffffff"

},
action: "myschema://registration",
image: "http://static.ml.com/2b7c0ecb042a5.png",
background_color: "#ffffff"

}

Wrapper 2.0
➢ The response can change based on the App

version (design with that in mind).

➢ The backend is easily modified, the apps are not.

➢ Backend must always be backward compatible.

Quality Assurance

Branching Model
A successful git branching
model
➢ Three main branches:

○ develop
○ release
○ master

We have a
new release

process =)

Agile Release Trains
➢ Every 2 weeks a new version is released.

➢ Every 2 weeks, the train passes by and
takes with it all merged PRs.

➢ A release train is implemented with
a Milestone in Github.

Agile Release Trains

Train 1

Regression Staged
Rollout

Train 2 Train 3

Week1 Week2 Week3 Week4 Week5

The Release Manager
❖ Assigning Pull Requests.

❖ Checking if the new version is ok.

❖ Creating the "What's New"

❖ Creating the APK and rolling it out.

❖ Following issues.

Agile Release Trains
➢ Better communication with teams

➢ Teams estimate based on this schedule.

➢ New versions are better tested and controlled.

Testing
Automation

Android Testing Pyramid

Testing Automation
➢ MVP

○ Most logic is in the presenter.

○ More testable and readable code.

➢ Coverage from unit tests
○ Stable and fast.

○ Run the same local and in CI.

This is our vision
Building the foundation to Build a 3B Company by FY20

@Test
public void testPictureResourceNoDeeplink() throws IOException {
 MySomething mock = mock(MySomething.class);

 // Mock listener and run test method
 presenter.callSomeMethod(mock);

 verify(myMVPView, times(1)).methodExecutedOnlyOnceOnView(view);
 verify(myMVPView, never()).methodMustNotBeExecutedOnView(view);

}

Testing Automation (example)

CI & CD
➢ Continuous Integration

○ Automatically run tests and give feedback to

the RM and developer.

➢ Continuous Deployment
○ The APK is generated in Travis if the last

commit to release/master contains [ci deploy].

Code Review & Static Code Analysis

➢ Code standards.

➢ Improve code quality and documentation.

➢ Share good practices & reduce bugs.

➢ Accept constructive comments.

How
everything

worked out?

One big-fat repo

Distributed development

A whole new feature is just a line...

New
Challenges

Distributed Bugs

Evangelize Good Practices

MARCOS BARRETO
@marbarfa

