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A not so long time ago 
in a galaxy not so 

far far away...





One team to rule them all
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To scale and to be agile, 
we needed to change





Scaling the mobile code...
➢ Improve code quality and reduce bugs

➢ Facilitate mobile development

➢ Support new teams in app dev.

➢ More agile development
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Basic structure
➢ Each module has a testapp

➢ Each module can have one

(or more) Android modules.

➢ Each module just imports: 

...
compile("com.mercadolibre.android.sdk:sdk:$sdkVersion")
compile("com.mercadolibre.android.sdk:mvp:$sdkVersion")
...



How do we 
communicate?



Communication
➢ Modules don't know each other.
➢ The navigation is through predefined URLs
➢ 100% decoupled and “Deep Linking” Ready

final Intent intent = new Intent(this);
final Uri uri = Uri.parse("myscheme://myhost/segment1?k=v");
intent.setData(uri);
startActivity(intent);





Navigation
➢ Pro: 

➢ Simple and known approach.
➢ Based in how Android handles the deeplinks.

➢ Cons: 
➢ Uri has to be parsed
➢ Cannot do pre-fetching



<activity
   android:name=".activities.MyActivity"
   android:exported="false">

   <intent-filter>
     <action android:name="android.intent.action.VIEW" />
     <category android:name="android.intent.category.DEFAULT" />
     <category android:name="android.intent.category.BROWSABLE" />

       <data
   android:host="items"
   android:pathPattern="/something"

           android:scheme="ml" />
   </intent-filter>
</activity>

Navigation



public class MyActivity extends AppCompatActivity {

   @Override

   protected void onCreate(Bundle savedInstanceState) {

       super.onCreate(savedInstanceState);

       // ml://items/something?k=v 

       if (getIntent().getData() != null) {

           final Uri deeplink = getIntent().getData();

           final List<String> segments = deeplink.getPathSegments();

           final String val1 = deeplink.getQueryParameter("k");

   ...

Navigation

segments.get(0) == "something"



Wrapper 2.0



This is our vision
Building the foundation to Build a 3B Company by FY20
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This is our vision
Building the foundation to Build a 3B Company by FY20

  

Wrapper 2.0
{

id: "sign_up",
title: "¿Aún no tienes cuenta?",
button: 
{

text: "Regístrate gratis",
text_color: "#666666",
background_color: "#ffffff"

},
action: "myschema://registration",
image: "http://static.ml.com/2b7c0ecb042a5.png",
background_color: "#ffffff"

}



Wrapper 2.0
➢ The response can change based on the App 

version (design with that in mind).

➢ The backend is easily modified, the apps are not.

➢ Backend must always be backward compatible.



Quality Assurance



Branching Model
A successful git branching 
model
➢ Three main branches:

○ develop
○ release
○ master



We have a 
new release 

process =)



Agile Release Trains
➢ Every 2 weeks a new version is released.

➢ Every 2 weeks, the train passes by and 
takes with it all merged PRs.

➢ A release train is implemented with
a Milestone in Github.



Agile Release Trains
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The Release Manager
❖ Assigning Pull Requests.

❖ Checking if the new version is ok.

❖ Creating the "What's New"

❖ Creating the APK and rolling it out.

❖ Following issues.



Agile Release Trains
➢ Better communication with teams

➢ Teams estimate based on this schedule.

➢ New versions are better tested and controlled.



Testing 
Automation



Android Testing Pyramid



Testing Automation
➢ MVP 

○ Most logic is in the presenter.

○ More testable and readable code.

➢ Coverage from unit tests
○ Stable and fast.

○ Run the same local and in CI.



This is our vision
Building the foundation to Build a 3B Company by FY20

  

@Test
public void testPictureResourceNoDeeplink() throws IOException {
  MySomething mock = mock(MySomething.class);

   // Mock listener and run test method
   presenter.callSomeMethod(mock);

   verify(myMVPView, times(1)).methodExecutedOnlyOnceOnView(view);
   verify(myMVPView, never()).methodMustNotBeExecutedOnView(view);

}

Testing Automation (example)



CI & CD
➢ Continuous Integration

○ Automatically run tests and give feedback to 

the RM and developer.

➢ Continuous Deployment
○ The APK is generated in Travis if the last 

commit to release/master contains [ci deploy].



Code Review & Static Code Analysis

➢ Code standards.

➢ Improve code quality and documentation.

➢ Share good practices & reduce bugs.

➢ Accept constructive comments.



How 
everything 

worked out?



One big-fat repo



Distributed development



A whole new feature is just a line...



New 
Challenges



Distributed Bugs



Evangelize Good Practices
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